FM Broadcast Radio Data System Encoder MCU with two communication ports

DESCRIPTION

The P232 Microcontroller forms a fully digital Radio Data System encoder that has been developed especially for FM broadcasting. It implements physical and data-link layers and supports extended set of RDS services.

The device provides two independent hardware serial communication ports and supports optional I^2C slave peripherals such as EEPROM memory, RTC or digital potentiometer.

Depending on the output filter choice, the device is either fixed to generate single subcarrier (original RDS) or can support up to two subcarriers (RDS2).

FEATURES

- Single supply 3.0 to 5.5 V
- Typical operating current: 12 mA @ 5.0 V
- Minimum external parts
- I²C bus for external peripherals like EEPROM, real time clock or digital potentiometer
- External TA and Program switch
- Two indication LED outputs
- Integrated support for HD44780 based LCD
- Industrial temperature range
- Clocked with low-cost 16 MHz crystal
- Both stereo and mono operation possible
- Fully integrated DSP pilot tone filter and PLL
- Parallel 8-bit D/A converter, 592 kHz sampling rate (over-sampled)
- Only simple output filter required
- RDS/RBDS signal: conforms to CENELEC EN 50067 / IEC 62106
- 2 independent hardware serial communication ports for RDS control and configuration
- Backward compatible with PIRA32
- Firmware update capability
- Final product requires no factory adjustment
- RoHS compliant
- Packages available: 40-lead PDIP 44-lead TQFP

APPLICATIONS

 FM broadcast RDS encoders with up to two independent physical communication ports

Important Note:

This datasheet is not intended to be a complete P232 system designer's reference source. For more information on the features, characteristics, control and use refer to these documents: "P232(U) RDS Encoder Technical Manual" (available online) "P232/PIRA32 Device Configuration" (available on request)

The manufacturer is not liable for any damages, including but not limited to, lost profits, lost savings, or other incidental or consequential damages arising out of the use of this product.

No part of this datasheet may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or information storage and retrieval systems, for any purpose other than the purchaser's personal use. Information in this document is subject to change without notice.

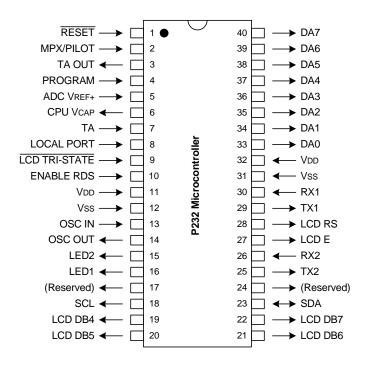
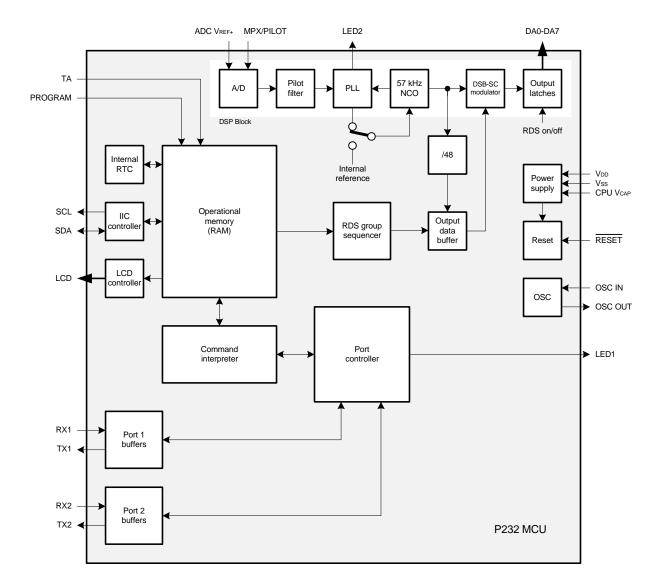

Revision 2024-03-03

TABLE OF CONTENTS

1	Pin D 1.1 1.2 1.3	iagrams and Description 40-Pin PDIP 44-Pin TQFP Pin descriptions	3 3 4
	1.4	Internal logical structure (simplified)	6
2	Elect	rical Characteristics	7
3	Exter	nal Devices Supported	8
	3.1	External I ² C devices supported	
	3.2	Support for external LCD display	
4	Conn	ection Diagrams and Application Notes	9
•	4.1	Basic connection diagram	
	4.2	Design notes	
	4.2.1	Power supply	
	4.2.2	Hardware reset	
	4.2.3	Crystal oscillator	0
	4.2.4	MPX/Pilot input and pilot PLL	0
	4.2.5	RS-232 interface (Port 1, Port 2)	1
	4.2.6	Digital-to-Analog converter	1
	4.2.7	Output low-pass filter	
	4.3	Typical applications (simplified block diagrams)	
	4.3.1	RDS Encoder with RS-232 and USB interface	
	4.3.2	RDS Encoder with RS-232 interface and independent control from embedded microcomputer	
	4.4	Sample application circuits	
	4.4.1	Real time backup sample circuit	
	4.4.2	Onboard Serial to USB adapter sample circuit	
	4.4.3	RDS level control circuit	5
	4.4.4	Analog section sample circuit	
	4.4.5	Part list	6
5	Packa	age Details	
	5.1	40-Lead Plastic Dual In-Line (PDIP) 600 mil Body	
	5.2	44-Lead Plastic Thin Quad Flatpack (TQFP) – 10x10x1 mm Body	20

1 PIN DIAGRAMS AND DESCRIPTION

1.1 40-Pin PDIP


1.2 44-Pin TQFP

1.3 Pin descriptions

Pin name	Description	Internal weak pull-up
/RESET	Device reset Logical low on this pin holds the device in reset state. If the reset function is not required, connect this pin to V_{DD} through 10k resistor.	
MPX/PILOT	MPX or pilot tone analogue input for RDS sync. MPX or pilot sample input for RDS sub-carrier synchronization in case of stereo transmission. Average DC component of the input signal should be (ADC V_{REF+} / 2). Peak value should not exceed V_{SS} and ADC V_{REF+} boundaries. If the pilot sync. function is not required, connect this pin to V_{SS} .	
PROGRAM	Program selectSelects between two different RDS data sets (program 1 or program 2).If the program external switching function is not required, connect this pin to V_{DD} through a resistor.	
ΤΑ ΟυΤ	TA output RDS Traffic Announcement (TA) logical output from internal decoder. Can be left unconnected.	
ADC V _{REF+}	Positive voltage reference for internal A/D converter Connect this pin to V_{DD} through a 15 Ω resistor. Decoupling this pin to V_{SS} using a 10 μ F capacitor is recommended. Direct connection of this pin to V_{DD} is not recommended due to noise parameters. This pin must be connected also if the pilot sync. function is not required!	
CPU V _{CAP}	External filter capacitor connection A low-ESR (< 5Ω) capacitor is required on this pin to stabilize internal voltage regulator output voltage. The capacitor must be connected to ground. The type can be ceramic or tantalum, a value of 10 μ F.	
ТА	TA switch input RDS Traffic Announcement (TA) flag control. If the TA external switching function is not required, connect this pin to V_{DD} through a resistor.	
V _{DD}	Positive supplyApply V_{DD} power supply voltage to this pin. All V_{DD} pins must be connected.Decoupling capacitor is required on every pair of V_{DD} and V_{SS} pins. A 100 nF 10-20V capacitor is recommended. Ceramic capacitors are recommended. The decoupling capacitors should be placed as close to the pins as possible.It is recommended to add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor should be 1 nF.	
V _{SS}	Ground reference All V _{SS} pins must be connected.	
OSC IN	Crystal oscillator input Tie to 16 MHz crystal pin or an integrated crystal oscillator output.	
OSC OUT	Crystal oscillator output Tie to 16 MHz crystal pin. Leave unconnected if an integrated crystal oscillator is used for clocking the device via pin OSC IN. Can be used for clocking another device on the board.	

LED1	Operation LED Connect an indication LED (+) through a resistor or leave unconnected.	
LED2	Pilot LED Connect an indication LED (+) through a resistor or leave unconnected.	
SCL	I ² C serial clock output Open-drain terminal, external 2k pull-up resistor is required.	
LCD DBx, LCD E, LCD RS	LCD data line LCD data line to a HD44780-based LCD driver. If the LCD is not required, leave these pins unconnected.	
SDA	I ² C serial data input/output Open-drain terminal, external 2k pull-up resistor is required.	
тх1	Serial port 1 Transmit data Serial RS-232 port 1 transmit data output (software selectable 1200 to 19200 bps). Logical high = idle. If the port 1 is not required, leave this pin unconnected.	
RX1	Serial port 1 Receive data Serial RS-232 port 1 receive data input (software selectable 1200 to 19200 bps). Logical high = idle. If the port 1 is not required, connect this pin to V_{DD} through a resistor.	
тх2	Serial port 2 Transmit data Serial RS-232 port 2 transmit data output (19200 bps). Logical high = idle. If the port 2 is not required, leave this pin unconnected.	
RX2	Serial port 2 Receive data Serial RS-232 port 2 receive data input (19200 bps). Logical high = idle. If the port 2 is not required, connect this pin to V_{DD} through a resistor.	
DA0-DA7	D/A Converter bit 0 to 7 These pins together form driving signal for output parallel D/A converter. A simple low-cost R/2R resistor network can serve the D/A converter function. The R value should be 1k.	
ENABLE RDS	Enable RDS Output Driving this pin low disables the RDS output by switching D/A converter output latches to 3-state. This pin has a higher priority compared to RDSGEN command. If the RDS output has to be always enabled by hardware (standard operation), leave this pin unconnected.	*
/LCD TRI-STATE	LCD drivers 3-state Driving this pin low puts the LCD data line pins to 3-state. If that function is not required (i.e. for standard operation), leave this pin unconnected.	~
LOCAL PORT	Local port selection Logical high or unconnected = local port is the port 1 Logical low = local port is the port 2 Local port means the serial communication port on which ASCII commands cannot be disabled by PAC feature. Implemented in fw version 2.1f. In previous versions the Local Port is fixed to port 1.	✓
(Reserved)	Reserved for future use Leave unconnected or tie to V_{DD} through 10k resistor.	
NC	Not connected Leave unconnected.	

1.4 Internal logical structure (simplified)

2 ELECTRICAL CHARACTERISTICS

Maximum Ratings

$\begin{array}{l} \mbox{Ambient temperature under bias}\\ \mbox{Storage temperature}\\ \mbox{Voltage on V_{DD} with respect to V_{SS}}\\ \mbox{Voltage on any I/O pin with respect to V_{SS}}\\ \end{array}$	
Maximum current sourced by any output pin Maximum current sourced by any output pin	

Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
V _{DD}	Supply voltage	3.0	-	5.5	V	
VIL	Input Low Voltage	V _{SS}		$0.2 V_{DD}$	V	Logical and RX inputs
V _{IH}	Input High Voltage	0.8 V _{DD}		V _{DD}	V	Logical and RX inputs
Fosc	Crystal Osc. Frequency	-0.01 %	16	+0.01 %	MHz	
Fs	D/A Converter sampling rate	-	592	-	kHz	
L _{MPX}	MPX input level	1000	-	V _{DD} - V _{SS}	mV pp	Stereo broadcast
L _{PILOT}	Pilot tone input level	80	-	V _{DD} - V _{SS}	mV pp	Stereo broadcast
B _{PLL}	PLL capture range	-	8	-	Hz	
F _{CLK}	I ² C clock frequency	-	400	-	kHz	

3 EXTERNAL DEVICES SUPPORTED

The P232 Microcontroller supports several external devices that extend its possibilities. Most of these devices are optional, i.e. the final design is highly customizable.

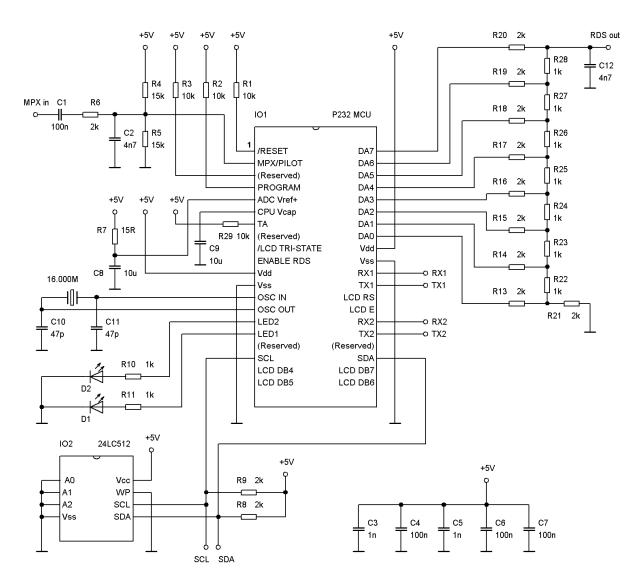
3.1 External I²C devices supported

The I²C slave devices supported are listed in following table:

Device name	Manufacturer	Description
PCF8563T NXP		Battery powered backup real-time clock (RTC).
24LC512 or M24512	Microchip or ST	Serial EEPROM. Non-volatile memory for storing RDS and configuration data. Required for proper function.
MCP4551-103	Microchip	Digital potentiometer for software control of the RDS output level.

Note: Auto detection algorithm on power-up is used for the devices listed above.

3.2 Support for external LCD display


The P232 Microcontroller can optionally drive a HD44780-based 16×2 LCD display:

LCD Signal	Default pin *	P232 Microcontroller pin
V _{SS}	1	V _{ss}
V _{CC}	2	V _{DD}
V0	3	
RS	4	LCD RS
R/W	5	V _{ss}
E	6	LCD E
DB0	7	V _{ss}
DB1	8	V _{ss}
DB2	9	V _{ss}
DB3	10	V _{ss}
DB4	11	LCD DB4
DB5	12	LCD DB5
DB6	13	LCD DB6
DB7	14	LCD DB7

* Note: Please refer to your LCD module datasheet for pin assignment.

4 CONNECTION DIAGRAMS AND APPLICATION NOTES

4.1 Basic connection diagram

The figure above effectively represents minimum required connection for proper operation. It is a default circuit for further extensions and development purposes.

Note: The SCL and SDA terminals are optional (see section 3.1).

4.2 Design notes

4.2.1 Power supply

All power supply pins (V_{SS},V_{DD}) must always be connected.

The use of decoupling capacitors on every pair of power supply pins is required. Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μF (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: Since the final equipment may experiencing high-frequency noise (upward
 of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor.
 The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor
 next to each primary decoupling capacitor, closer to the Microcontroller.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

A low-ESR (< 5 Ω) capacitor is required on the CPU V_{CAP} pin to stabilize the internal voltage regulator voltage. The pin must **not** be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. It is recommended that the trace length not exceed 0.25 inch (6 mm).

4.2.2 Hardware reset

The hardware reset is generated by holding the /RESET pin low. The device has a noise filter in the reset path which detects and ignores small pulses.

A reset pulse is generated on-chip whenever V_{DD} rises above a certain threshold. This allows the device to start in the initialized state when V_{DD} is adequate for operation. To take advantage of this feature, tie the /RESET pin through a resistor (1k to 10k) to V_{DD} . This will eliminate external RC components usually needed to create a reset delay.

When the device starts normal operation (i.e., exits the reset condition), device operating parameters (voltage, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

4.2.3 Crystal oscillator

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

The load capacitor value depends on the crystal characteristics. Optimal value ensures the F_{OSC} to lie in the tolerance range given in section Electrical characteristics. A good starting value is 47 pF for the load capacitors.

4.2.4 MPX/Pilot input and pilot PLL

The P232 Microcontroller includes an internal phase locked loop, which synchronises the RDS subcarrier with 19 kHz pilot tone in case of stereo broadcast. Parameters of the PLL are controlled by software.

MPX signal or pilot tone is tied to the MPX/PILOT input pin. For the MPX signal, in order to keep the PLL performance, it is especially important not to exceed its signal level boundaries represented by power supply voltage. The pilot tone contained within the MPX signal must have at least the level equivalent to the parameter L_{PILOT} minimum (see section Electrical characteristics). To meet these signal level requirements, if a wide range of input signal is expected on the MPX/PILOT pin, the signal should be pre-filtered using a simple 19 kHz bandpass filter. If there are spectrum components in the MPX signal above 60 kHz, these should be attenuated before feeding to the MPX/PILOT pin to prevent internal aliasing effect that can affect the PLL performance.

4.2.5 RS-232 interface (Port 1, Port 2)

The RS-232 interface is used on each port for the device configuration and data transfers. The RX and TX pin levels are compatible with TTL. For connection to external RS-232 equipment, an inverter and level converter is required (for example MAX232). For providing a USB connection, use a serial to USB converter IC (for example FT232).

The serial data format is given in the RDS Encoder Technical manual (available online).

The port characteristics are summarized in following table:

Port name	I/O Pins	Baudrate	Initialization string *	Readiness **
Port 1	RX1, TX1	Software configurable 1200 to 19200 bps	Firmware version <cr><lf></lf></cr>	2500 ms
Port 2	RX2, TX2	Fixed at 19200 bps	AT+i <cr><lf></lf></cr>	15 s

Notes: * The initialization string is a string send out of the device via TX pin on each power-up or reset. ** Time required after power-up or reset to get accepting incoming commands.

4.2.6 Digital-to-Analog converter

The P232 Microcontroller uses a parallel 8-bit D/A converter with over-sampling technique. Digital data provided on DA pins can be directly formed into final analogue RDS output signal using low-cost resistor network.

Figure 4.2.6.1 shows accurate 8-bit DAC using R/2R resistor network. It's a binary weighted DAC that creates each value with a repeating structure of 2 resistor values, R and R times two. This is an optimal DAC for this device. The resistor value tolerance must not exceed 2 %.

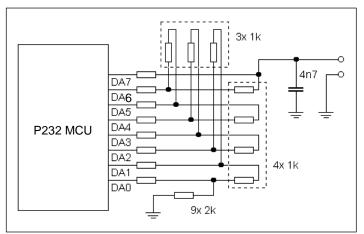


Figure 4.2.6.1 - 8-bit D/A converter R/2R network

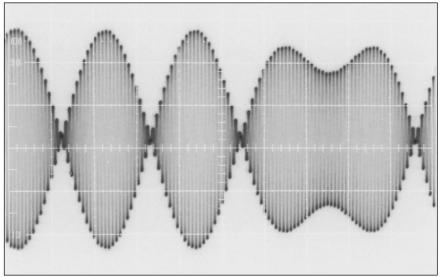


Figure 4.2.6.2 - Output RDS signal on oscilloscope (horizontal: 200 µs/div, vertical: 500 mV/div).

4.2.7 Output low-pass filter

The output RDS signal behind the D/A converter requires no special filtering. Spurious products are kept below -80 dB limit in the MPX signal (a noise level of high quality FM transmitters) and the D/A conversion residues around the sampling frequency can be cut-off using a simple low-pass or band-pass filter. Such filter may be based either on active filter or a simple LC element. The filter can be connected either before or after the output level control. The filter examples are included in this datasheet.

For FM broadcast purposes the low-pass filter rejection should be at least 20 dBc on the sampling frequency.

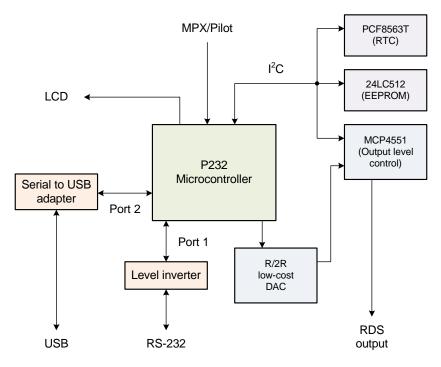
It is however recommended for high quality FM broadcasting that the output filter characteristics interpolate at least these values:

For single subcarrier (standard RDS):

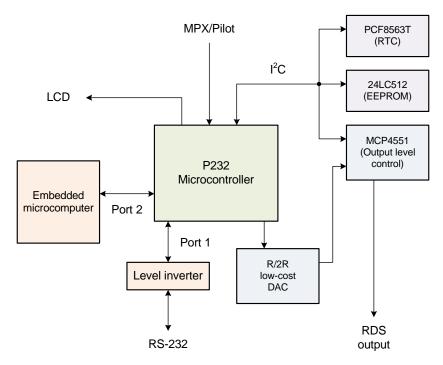
15 kHz	57 kHz	592 kHz
-20 dB	0 dB	-30 dB

For up to two subcarriers (RDS2):

15 kHz	57 kHz	66.5 kHz	592 kHz
-26 dB	0 dB	0 dB	-34 dB

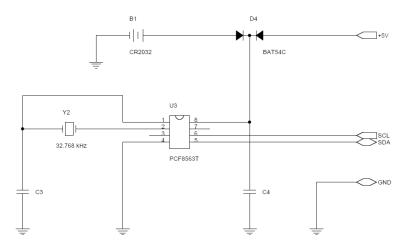

4.2.8 Device initialization

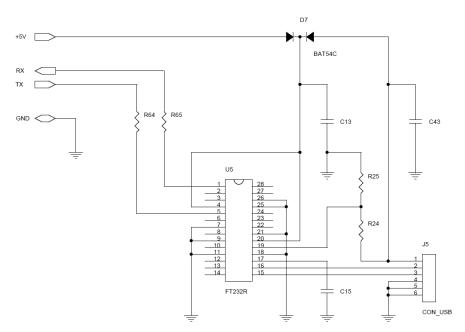
After the PCB assembly and final mounting, the device needs to be initialized before distribution. The initialization puts factory default values to the EEPROM memory.


Follow the Technical manual for the initialization ASCII command sequence or use the Windows control software for the same purpose.

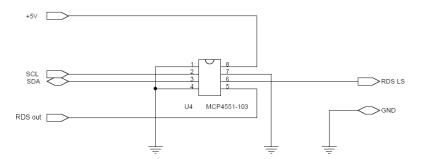
4.3 Typical applications (simplified block diagrams)

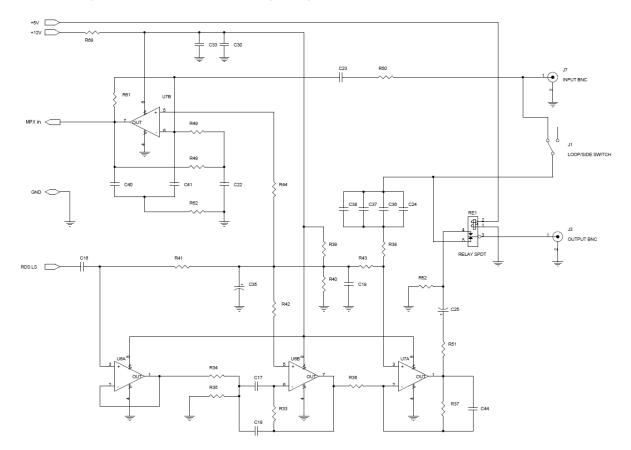
4.3.1 RDS Encoder with RS-232 and USB interface


4.3.2 RDS Encoder with RS-232 interface and independent control from embedded microcomputer


4.4 Sample application circuits

Note: Net names refer to the 'Basic connection diagram' (section 4.1).


4.4.1 Real time backup sample circuit

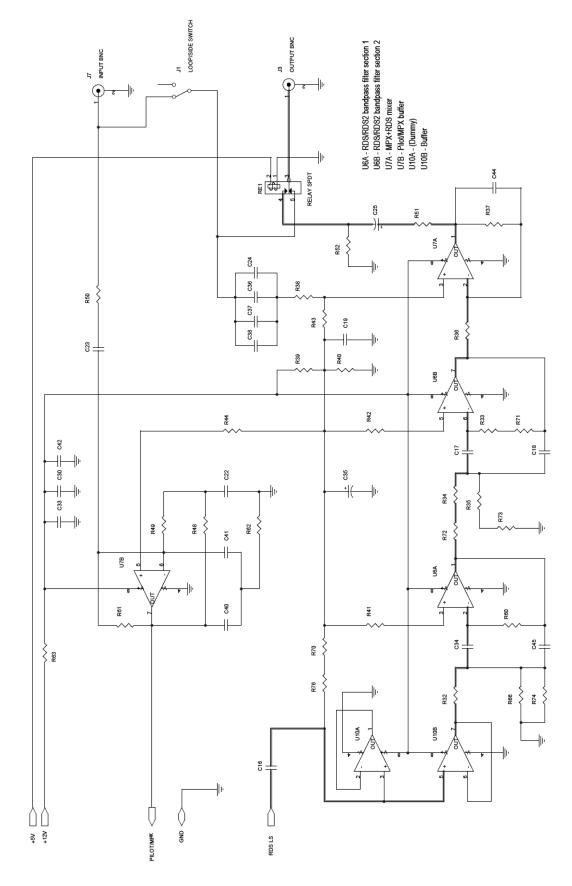


4.4.2 Onboard Serial to USB adapter sample circuit

4.4.3 RDS level control circuit

4.4.4 Analog section sample circuit passing a single subcarrier (standard RDS)

Notes: J7 – Optional MPX or pilot tone input J3 – RDS or mixed output U6A section – Buffer providing low output impedance U6B section – 57kHz bandpass filter U7A section – MPX+RDS mixer U7B section – MPX/Pilot buffer and pre-filtering


Output RDS level: software adjustable 0 to 4000 mVpp

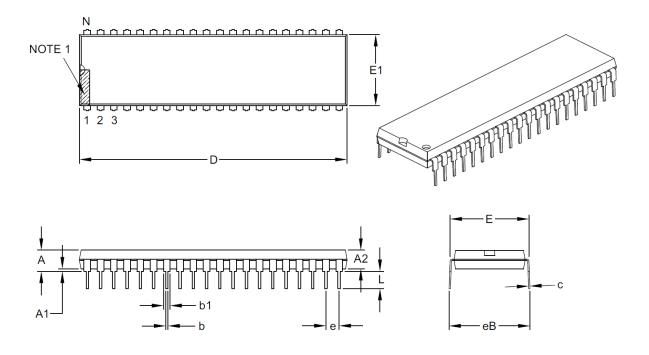
P232 Microcontroller

4.4.5 Part list

Note: The part list is common to all sample application circuits from sections 4.4.1 to 4.4.4.

Part	Туре	Value	Tolerance	Specification
B1	Battery holder	CR2032		Horizontal
C44	Capacitor	47p	10%	C0G/NP0
C3	Capacitor	22p	10%	C0G/NP0
C4, C13, C15, C19, C43	Capacitor	100n	20%	X7R
C22	Capacitor	4n7	10%	C0G/NP0
C16, C17, C18	Capacitor	1n	10%	C0G/NP0
C23, C40, C41	Capacitor	2n2	10%	C0G/NP0
C24, C36, C37, C38	Capacitor	2u2/50V	20%	X7R
C25, C35	Capacitor	100u/25V		Electrolytic
C30, C33	Capacitor	100n/100V	20%	X7R
D4, D7	Schottky diode	BAT54C		
J1	Switch	SK-12D20-V2		SPDT or SPST
J3, J7	Connector	BNC 50 ohm		90 deg.
J5	Connector	USB-B		
R25, R62	Resistor	2k	1%	
R38, R39, R40, R42, R43	Resistor	10k	1%	
R24, R64, R65	Resistor	1k	1%	
R32	Resistor	2R2	5%	
R33	Resistor	15k	1%	
R34, R36, R37, R48, R49	Resistor	3k9	1%	
R35	Resistor	510R	1%	
R41, R44, R50, R52, R61	Resistor	47k	5%	
R51	Resistor	100R	5%	
R68	Resistor	2R2		
RE1	Relay	DIP05-1C90-51L		SPDT
U3	IC	PCF8563T		
U4	IC	MCP4551-103		
U5	IC	FT232R		
U6, U7	IC	NE5532		
Y2	Crystal	32.768 kHz		

4.4.6 Analog section sample circuit passing up to two subcarriers (optional RDS2)


4.4.7 Part list (RDS2 analog section only)

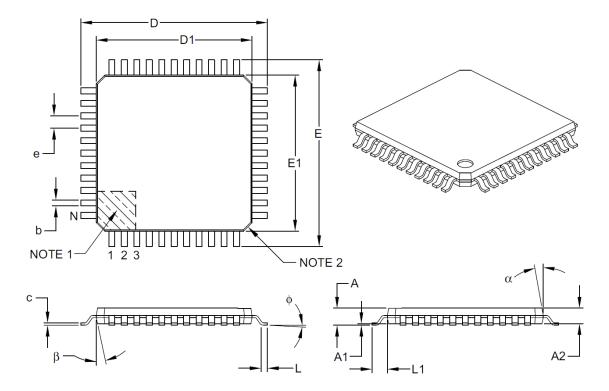
Note: In 2024, there are no commercially available receivers with RDS2 support.

Part	Туре	Value	Tolerance	Specification
C44	Capacitor	47p	10%	C0G/NP0
C22	Capacitor	4n7	10%	C0G/NP0
C16, C17, C18, C34, C45	Capacitor	1n	10%	C0G/NP0
C23, C40, C41	Capacitor	2n2	10%	C0G/NP0
C24, C36, C37, C38	Capacitor	2u2/50V	20%	X7R
C25, C35	Capacitor	100u/25V		Electrolytic
C19, C30, C33, C42	Capacitor	100n	20%	X7R
J1	Switch	SK-12D20-V2		SPDT or SPST
J3, J7	Connector	BNC 50 ohm		90 deg.
R62, R72	Resistor	2k	1%	
R33, R38, R39, R40, R41, R42, R43, R44, R71, R74	Resistor	10k	1%	
R32, R34	Resistor	5k1	1%	
R60	Resistor	15k	1%	
R35, R66	Resistor	360R	1%	
R36, R37, R48, R49	Resistor	3k9	1%	
R63	Resistor	1R	5%	
R50, R52, R61, R70, R76	Resistor	47k	5%	
R51, R73	Resistor	100R	1%	
RE1	Relay	G5V1-5		SPDT
U6, U7, U10	IC	NE5532		

5 PACKAGE DETAILS

40-Lead Plastic Dual In-Line (PDIP) 600 mil Body 5.1

Units		INCHES			
Dimension Limits		MIN	TYP	MAX	
Number of Pins	Ν	40			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	с	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	-	-	.700	


Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- § Significant Characteristic.
 Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Units		MILLIMETERS			
Dimension Limits		MIN	TYP	MAX	
Number of Leads	Ν	44			
Lead Pitch	е	0.80 BSC			
Overall Height	А	-	-	1.2	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	с	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.